A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis.
نویسندگان
چکیده
Type I polyketide synthases often use programmed β-branching, via enzymes of a 'hydroxymethylglutaryl-CoA synthase (HCS) cassette', to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in acyl carrier proteins (ACPs) where β-branching is known to occur. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. Although these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modeling and mutagenesis identified ACP helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality, whereas ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering new polyketides and lays a basis for determining specificity rules.
منابع مشابه
Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.
Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor...
متن کاملN-activated β-lactams as versatile reagents for acyl carrier protein labeling.
Acyl carrier proteins are critical components of fatty acid and polyketide biosynthesis. Their primary function is to shuttle intermediates between active sites via a covalently bound phosphopantetheine arm. Small molecules capable of acylating this prosthetic group will provide a simple and reversible means of introducing novel functionality onto carrier protein domains. A series of N-activate...
متن کاملPhylogenetic analysis of homologous fatty acid synthase and polyketide synthase involved in aflatoxin biosynthesis
The first two steps of aflatoxin biosynthesis are catalyzed by the HexA/B and by the Pks protein. The phylogenetic analysis clearly distinguished fungal HexA/B from FAS subunits and from other homologous proteins. The phylogenetic trees of the HexA and HexB set of proteins share the same clustering. Proteins involved in the synthesis of fatty acids or in the aflatoxin or sterigmatocystin biosyn...
متن کاملCrystal structure of the acyltransferase domain of the iterative polyketide synthase in enediyne biosynthesis.
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synth...
متن کاملProbing the Phosphopantetheine Arm Conformations of Acyl Carrier Proteins Using Vibrational Spectroscopy
Acyl carrier proteins (ACPs) are universal and highly conserved domains central to both fatty acid and polyketide biosynthesis. These proteins tether reactive acyl intermediates with a swinging 4'-phosphopantetheine (Ppant) arm and interact with a suite of catalytic partners during chain transport and elongation while stabilizing the growing chain throughout the biosynthetic pathway. The flexib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature chemical biology
دوره 9 11 شماره
صفحات -
تاریخ انتشار 2013